Designing Human-Centered AI to Prevent Medication Dispensing Errors: Focus Group Study With Pharmacists

JMIR Form Res. 2023 Dec 25:7:e51921. doi: 10.2196/51921.

Abstract

Background: Medication errors, including dispensing errors, represent a substantial worldwide health risk with significant implications in terms of morbidity, mortality, and financial costs. Although pharmacists use methods like barcode scanning and double-checking for dispensing verification, these measures exhibit limitations. The application of artificial intelligence (AI) in pharmacy verification emerges as a potential solution, offering precision, rapid data analysis, and the ability to recognize medications through computer vision. For AI to be embraced, it must be designed with the end user in mind, fostering trust, clear communication, and seamless collaboration between AI and pharmacists.

Objective: This study aimed to gather pharmacists' feedback in a focus group setting to help inform the initial design of the user interface and iterative designs of the AI prototype.

Methods: A multidisciplinary research team engaged pharmacists in a 3-stage process to develop a human-centered AI system for medication dispensing verification. To design the AI model, we used a Bayesian neural network that predicts the dispensed pills' National Drug Code (NDC). Discussion scripts regarding how to design the system and feedback in focus groups were collected through audio recordings and professionally transcribed, followed by a content analysis guided by the Systems Engineering Initiative for Patient Safety and Human-Machine Teaming theoretical frameworks.

Results: A total of 8 pharmacists participated in 3 rounds of focus groups to identify current challenges in medication dispensing verification, brainstorm solutions, and provide feedback on our AI prototype. Participants considered several teaming scenarios, generally favoring a hybrid teaming model where the AI assists in the verification process and a pharmacist intervenes based on medication risk level and the AI's confidence level. Pharmacists highlighted the need for improving the interpretability of AI systems, such as adding stepwise checkmarks, probability scores, and details about drugs the AI model frequently confuses with the target drug. Pharmacists emphasized the need for simplicity and accessibility. They favored displaying only essential information to prevent overwhelming users with excessive data. Specific design features, such as juxtaposing pill images with their packaging for quick comparisons, were requested. Pharmacists preferred accept, reject, or unsure options. The final prototype interface included (1) checkmarks to compare pill characteristics between the AI-predicted NDC and the prescription's expected NDC, (2) a histogram showing predicted probabilities for the AI-identified NDC, (3) an image of an AI-provided "confused" pill, and (4) an NDC match status (ie, match, unmatched, or unsure).

Conclusions: In partnership with pharmacists, we developed a human-centered AI prototype designed to enhance AI interpretability and foster trust. This initiative emphasized human-machine collaboration and positioned AI as an augmentative tool rather than a replacement. This study highlights the process of designing a human-centered AI for dispensing verification, emphasizing its interpretability, confidence visualization, and collaborative human-machine teaming styles.

Keywords: SEIPS; Systems Engineering Initiative for Patient Safety; artificial intelligence; communication; design; design methods; development; engineering; focus groups; human-computer interaction; medication errors; morbidity; mortality; patient safety; safety; tool; user-centered; user-centered design methods; visualization.