MCGPU-PET: An Open-Source Real-Time Monte Carlo PET Simulator

Comput Phys Commun. 2024 Mar:296:109008. doi: 10.1016/j.cpc.2023.109008. Epub 2023 Nov 13.

Abstract

Monte Carlo (MC) simulations are commonly used to model the emission, transmission, and/or detection of radiation in Positron Emission Tomography (PET). In this work, we introduce a new open-source MC software for PET simulation, MCGPU-PET, which has been designed to fully exploit the computing capabilities of modern GPUs to simulate the acquisition of more than 100 million coincidences per second from voxelized sources and material distributions. The new simulator is an extension of the PENELOPE-based MCGPU code previously used in cone-beam CT and mammography applications. We validated the accuracy of the accelerated code by comparing it to GATE and PeneloPET simulations achieving an agreement within 10 percent approximately. As an example application of the code for fast estimation of PET coincidences, a scan of the NEMA IQ phantom was simulated. A fully 3D sinogram with 6382 million true coincidences and 731 million scatter coincidences was generated in 54 seconds in one GPU. MCGPU-PET provides an estimation of true and scatter coincidences and spurious background (for positron-gamma emitters such as 124I) at a rate 3 orders of magnitude faster than CPU-based MC simulators. This significant speed-up enables the use of the code for accurate scatter and prompt-gamma background estimations within an iterative image reconstruction process.

Keywords: MCGPU; Monte Carlo; Positron Emission Tomography (PET); scatter estimation.