The elderberry diet protection against intrahippocampal Aβ-induced memory dysfunction; the abrogated apoptosis and neuroinflammation

Toxicol Res (Camb). 2023 Oct 19;12(6):1063-1076. doi: 10.1093/toxres/tfad097. eCollection 2023 Dec.

Abstract

This study evaluates whether elderberry (EB) effectively decreases the inflammation and oxidative stress in the brain cells to reduce Aβ toxicity. In the Aβ + EB group, EB powder was added to rats' routine diet for eight consecutive weeks. Then, spatial memory, working memory, and long-term memory, were measured using the Morris water maze, T-maze, and passive avoidance test. Also, in this investigation immunohistopathology, distribution of hippocampal cells, and gene expression was carried out. Voronoi tessellation method was used to estimate the spatial distribution of the cells in the hippocampus. In addition to improving the memory functions of rats with Aβ toxicity, a reduction in astrogliosis and astrocytes process length and the number of branches and intersections distal to the soma was observed in their hippocampus compared to the control group. Further analysis indicated that the EB diet decreased the caspase-3 expression in the hippocampus of rats with Aβ toxicity. Also, EB protected hippocampal pyramidal neurons against Aβ toxicity and improved the spatial distribution of the hippocampal neurons. Moreover, EB decreased the expression of inflammatory and apoptotic genes. Overall, our study suggest that EB can be considered a potent modifier of astrocytes' reactivation and inflammatory responses.

Keywords: apoptosis; astrocyte; hippocampus; inflammation; oxidative stress; pyramidal neurons.