Utilization of palm residues for biochar production using continuous flow pyrolysis unit

Food Chem X. 2023 Sep 28:20:100903. doi: 10.1016/j.fochx.2023.100903. eCollection 2023 Dec 30.

Abstract

Biochar is a carbonaceous solid substance produced by heating biomass without using air. This research aimed to create and evaluate local carbonization pyrolysis using a screw conveyor and filtration equipment. Date palm frond (DPF) biochar was studied and tested at pyrolysis temperatures of 320, 390, and 460 °C, as well as feeding rates of 60, 90, and 120 kg/h. The physicochemical parameters of DPF biochar were evaluated using SEM and FTIR. When the pyrolysis temperature was raised from 320 to 450 °C, and the feed rates were reduced from 120 to 60 kg/h, the biochar yield of DPF and volatiles fell. At 460 °C and 60 kg/h, the maximum ash and fixed carbon content were 11.73 and 77.61 %, respectively. As the feed rate decreased and the temperature increased, the H and O values (1.96 and 2.62 %, respectively) of DPF biochar decreased considerably; the C and N values (83.60 and 0.24 %, respectively) trended in opposite directions. The BET surface area and pore volume increased as a result of the micropore surface area and volume at higher temperatures and lower feeding rates, but water holding capacity increased from 6.04 gwater/10 g at 320 °C to 6.78 gwater/10 g at 390 °C (60 kg/h). The results showed that the heating temperature increased and the feeding rate decreased; phosphorus) P(and magnesium (Mg) increased significantly, whereas the levels of potassium (K) and calcium (Ca) showed a non-significant increase. Furthermore, as the pyrolysis temperature increased, pH and EC increased from 7.90 to 10.96 and 2.91 to 4.25 dSm-1, respectively, while CEC declined; however, there were no significant changes in CEC. DPF biochar demonstrated enhanced macro porosity and surface area at 460 °C and 60 kg/h, making it acceptable for agricultural use as a soil supplement.

Keywords: Biochar; Continuous flow; Date palm fronds; Physical and chemical properties; Pyrolysis.