Dynamic Gold Nanostructures Based on DNA Self Assembly

Small. 2023 Dec 24:e2308862. doi: 10.1002/smll.202308862. Online ahead of print.

Abstract

The combination of DNA nanotechnology and Nano Gold (NG) plasmon has opened exciting possibilities for a new generation of functional plasmonic systems that exhibit tailored optical properties and find utility in various applications. In this review, the booming development of dynamic gold nanostructures are summarized, which are formed by DNA self-assembly using DNA-modified NG, DNA frameworks, and various driving forces. The utilization of bottom-up strategies enables precise control over the assembly of reversible and dynamic aggregations, nano-switcher structures, and robotic nanomachines capable of undergoing on-demand, reversible structural changes that profoundly impact their properties. Benefiting from the vast design possibilities, complete addressability, and sub-10 nm resolution, DNA duplexes, tiles, single-stranded tiles and origami structures serve as excellent platforms for constructing diverse 3D reconfigurable plasmonic nanostructures with tailored optical properties. Leveraging the responsive nature of DNA interactions, the fabrication of dynamic assemblies of NG becomes readily achievable, and environmental stimulation can be harnessed as a driving force for the nanomotors. It is envisioned that intelligent DNA-assembled NG nanodevices will assume increasingly important roles in the realms of biological, biomedical, and nanomechanical studies, opening a new avenue toward exploration and innovation.

Keywords: DNA self-assembly; dynamic nanostructures arrangement; nano device regulation; plasmonic gold nanostructures; reversible robotic nanostructures.

Publication types

  • Review