Differential response of Hg-methylating and MeHg-demethylating microbiomes to dissolved organic matter components in eutrophic lake water

J Hazard Mater. 2024 Mar 5:465:133298. doi: 10.1016/j.jhazmat.2023.133298. Epub 2023 Dec 18.

Abstract

Methylmercury (MeHg) production in aquatic ecosystems is a global concern because of its neurotoxic effect. Dissolved organic matter (DOM) plays a crucial role in biogeochemical cycling of Hg. However, owing to its complex composition, the effects of DOM on net MeHg production have not been fully understood. Here, the Hg isotope tracer technique combined with different DOM treatments was employed to explore the influences of DOM with divergent compositions on Hg methylation/demethylation and its microbial mechanisms in eutrophic lake waters. Our results showed that algae-derived DOM treatments enhanced MeHg concentrations by 1.42-1.53 times compared with terrestrial-derived DOM. Algae-derived DOM had largely increased the methylation rate constants by approximately 1-2 orders of magnitude compared to terrestrial-derived DOM, but its effects on demethylation rate constants were less pronounced, resulting in the enhancement of net MeHg formation. The abundance of hgcA and merB genes suggested that Hg-methylating and MeHg-demethylating microbiomes responded differently to DOM treatments. Specific DOM components (e.g., aromatic proteins and soluble microbial byproducts) were positively correlated with both methylation rate constants and the abundance of Hg-methylating microbiomes. Our results highlight that the DOM composition influences the Hg methylation and MeHg demethylation differently and should be incorporated into future Hg risk assessments in aquatic ecosystems.

Keywords: Dissolved organic matter; Hg isotope tracer; Hg methylation; MeHg demethylation; Net MeHg production.

MeSH terms

  • Dissolved Organic Matter
  • Ecosystem
  • Lakes / chemistry
  • Mercury* / analysis
  • Methylmercury Compounds* / metabolism
  • Water
  • Water Pollutants, Chemical* / chemistry

Substances

  • Methylmercury Compounds
  • Dissolved Organic Matter
  • Mercury
  • Water
  • Water Pollutants, Chemical