Synthesis and Characterization of Cardanol-Based Non-Isocyanate Polyurethane

Polymers (Basel). 2023 Dec 12;15(24):4683. doi: 10.3390/polym15244683.

Abstract

This paper describes the synthesis of NIPU by using cardanol as starting material. A cardanol formaldehyde oligomer was first prepared through the reaction of cardanol and formaldehyde, catalyzed by citric acid. The resulting oligomer was then subjected to epoxidation with m-chloroperbenzoic acid to obtain an epoxide compound, which was subsequently used to fix carbon dioxide (CO2) and form a cyclic carbonate. Using this cyclic carbonate, along with an amine, cardanol-based isocyanate polyurethane (NIPU) was prepared. Different characterization methods, such as Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and thermogravimetric analysis (TGA), were used to confirm the synthesis of the four intermediate products and NIPU in the reaction process. This study highlights the promise of bio-based NIPU as a sustainable alternative in a number of applications while offering insightful information on the synthesis and characterization of the material.

Keywords: cardanol; cyclic carbonate; epoxidation; non-isocyanate polyurethane.

Grants and funding

This work was funded by the National Natural Science Foundation of China (No. 22075274), Key Laboratory of Polymer and Catalyst Synthesis Technology of Liaoning Province, and Discipline Team Building Program of Shenyang University of Technology.