An Aquaphotomics Approach for Investigation of Water-Stress-Induced Changes in Maize Plants

Sensors (Basel). 2023 Dec 7;23(24):9678. doi: 10.3390/s23249678.

Abstract

The productivity of plants is considerably affected by various environmental stresses. Exploring the specific pattern of the near-infrared spectral data acquired non-destructively from plants subjected to stress can contribute to a better understanding of biophysical and biochemical processes in plants. Experiments for investigating NIR spectra of maize plants subjected to water stress were conducted. Two maize lines were used: US corn-belt inbred line B37 and mutant inbred XM 87-136, characterized by very high drought tolerance. After reaching the 4-leaf stage, 10 plants from each line were subjected to water stress, and 10 plants were used as control, kept under a regular water regime. The drought lasted until day 17 and then the plants were recovered by watering for 4 days. A MicroNIR OnSite-W Spectrometer (VIAVI Solutions Inc., Chandler, AZ, USA) was used for in vivo measurement of each maize leaf spectra. PLS models for determining drought days were created and aquagrams were calculated separately for the plants' second, third, and fourth leaves. Differences in absorption spectra were observed between control, stressed, and recovered maize plants, as well as between different measurement days of stressed plants. Aquagrams were used to visualize the water spectral pattern in maize leaves and how it changes along the drought process.

Keywords: NIR spectra; aquagrams; maize plant; water stress.

MeSH terms

  • Dehydration*
  • Droughts
  • Plant Leaves
  • Stress, Physiological
  • Zea mays*