Bovine Lactoferrin and Hen Ovotransferrin Affect Virulence Factors of Acute Hepatopancreatic Necrosis Disease (AHPND)-Inducing Vibrio parahaemolyticus Strains

Microorganisms. 2023 Dec 2;11(12):2912. doi: 10.3390/microorganisms11122912.

Abstract

Acute Hepatopancreatic Necrosis Disease (AHPND), a highly destructive shrimp disease, has inflicted severe setbacks on the shrimp farming industry worldwide. As the use of antibiotics is discouraged due to emerging antibiotic-resistant bacteria and the pollution of ecosystems, there is a pressing demand for novel, sustainable alternatives. Hence, the influence of bovine lactoferrin (bLF) and hen ovotransferrin (OT), two natural antimicrobial proteins, on the growth of three AHPND-causing Vibrio parahaemolyticus (Vp) strains (M0904, TW01 and PV1) was examined. Additionally, we explored their potential to affect selected Vp virulence factors such as biofilm formation, swimming and swarming, cell surface hydrophobicity, and activity of released lipases and caseinases. Lag phases of all bacterial growth curves were significantly prolonged in the presence of bLF or OT (1, 5 and 10 mg/mL), and bLF (5 and 10 mg/mL) completely inhibited growth of all strains. In addition, bLF or OT significantly reduced biofilm formation (all tested bLF and OT concentrations for Vp M0904 and Vp PV1), bacterial swimming motility (0.5 mg/mL bLF and OT for Vp M0904 and Vp TW01; 1 mg/mL bLF and OT for all strains), cell surface hydrophobicity (for all strains, all bLF and OT concentrations tested except for 0.125 mg/mL OT for Vp PV1) and lipase activity (1 mg/mL bLF and OT for all strains and 0.5 mg/mL bLF and OT for Vp PV1). These promising in vitro results suggest that bLF and/or OT might be used as novel agents for combating AHPND and warrant further research to elucidate the underlying mechanisms of action to fully unlock their potential for AHPND disease management.

Keywords: AHPND; Vibrio parahaemolyticus; acute hepatopancreatic necrosis disease; bovine lactoferrin; ovotransferrin; transferrin.