Shotgun Metagenomics-Guided Prediction Reveals the Metal Tolerance and Antibiotic Resistance of Microbes in Poly-Extreme Environments in the Danakil Depression, Afar Region

Antibiotics (Basel). 2023 Dec 4;12(12):1697. doi: 10.3390/antibiotics12121697.

Abstract

The occurrence and spread of antibiotic resistance genes (ARGs) in environmental microorganisms, particularly in poly-extremophilic bacteria, remain underexplored and have received limited attention. This study aims to investigate the prevalence of ARGs and metal resistance genes (MRGs) in shotgun metagenome sequences obtained from water and salt crust samples collected from Lake Afdera and the Assale salt plain in the Danakil Depression, northern Ethiopia. Potential ARGs were characterized by the comprehensive antibiotic research database (CARD), while MRGs were identified by using BacMetScan V.1.0. A total of 81 ARGs and 39 MRGs were identified at the sampling sites. We found a copA resistance gene for copper and the β-lactam encoding resistance genes were the most abundant the MRG and ARG in the study area. The abundance of MRGs is positively correlated with mercury (Hg) concentration, highlighting the importance of Hg in the selection of MRGs. Significant correlations also exist between heavy metals, Zn and Cd, and ARGs, which suggests that MRGs and ARGs can be co-selected in the environment contaminated by heavy metals. A network analysis revealed that MRGs formed a complex network with ARGs, primarily associated with β-lactams, aminoglycosides, and tetracyclines. This suggests potential co-selection mechanisms, posing concerns for both public health and ecological balance.

Keywords: antibiotic resistance genes; heavy metals; metal resistance genes; shotgun metagenomics.

Grants and funding

This research was partially funded by INTA via their internal project DAXE (S.IGS22001).