Versatile, durable conductive networks assembled from MXene and sericin-modified carbon nanotube on polylactic acid textile micro-etched via deep eutectic solvent

J Colloid Interface Sci. 2024 Mar 15:658:648-659. doi: 10.1016/j.jcis.2023.11.187. Epub 2023 Dec 18.

Abstract

Integration of polylactic acid (PLA) textiles with conductive MXene holds great promise for fabricating green electronic textiles (e-textiles) and reducing the risk of electronic waste. However, constructing robust conductive networks on PLA fibers remains challenging due to the susceptibility of MXene to oxidation and the hydrophobicity of PLA fibers. Here, we demonstrate a versatile, degradable, and durable e-textile by decorating the deep eutectic solvent (DES) micro-etched PLA textile with MXene and sericin-modified carbon nanotube hybrid (MXene@SSCNT). The co-assembly of MXene with SSCNT in water not only enhanced its oxidative stability but also formed synergistic conductive networks with biomimetic leaf-like nanostructures on PLA fiber. Consequently, the MXene@SSCNT coated PLA textile (MCP-textile) exhibited high electrical conductivity (5.5 Ω·sq-1), high electromagnetic interference (EMI) shielding efficiency (34.20 dB over X-band), excellent electrical heating performance (66.8 ℃, 5 V), and sensitive humidity response. Importantly, the interfacial bonding between the MXene@SSCNT and fibers was significantly enhanced by DES micro-etching, resulting in superior wash durability of MCP-textile. Furthermore, the MCP-textile also showed satisfactory breathability, flame retardancy, and degradability. Given these outstanding features, MCP-textile can serve as a green and versatile e-textile with tremendous potential in EMI shielding, personal thermal management, and respiratory monitoring.

Keywords: DES pretreatment; Degradability; Durability; Multifunctionality; PLA-based e-textiles; Stability of MXene.