Hysteresis-Free, Elastic, and Tough Hydrogel with Stretch-Rate Independence and High Stability in Physiological Conditions

Small. 2023 Dec 22:e2309217. doi: 10.1002/smll.202309217. Online ahead of print.

Abstract

Many existing synthetic hydrogels are inappropriate for repetitive motions because of large hysteresis, and their mechanical properties in warm and saline physiological conditions remain understudied. In this study, a stretch-rate-independent, hysteresis-free, elastic, and tough nanocomposite hydrogel that can maintain its mechanical properties in phosphate-buffered saline of 37 °C similar to warm and saline conditions of the human body is developed. The strength, stiffness, and toughness of the hydrogel are simultaneously reinforced by biomimetic silica nanoparticles with a surface of embedded circular polyamine chains. Such distinctive surfaces form robust interfacial interactions by local topological folding/entanglement with the polymer chains of the matrix. Load transfer from the soft polymer matrix to stiff nanoparticles, along with the elastic sliding/unfolding/disentanglement of polymer chains, overcomes the traditional trade-off between strength/stiffness and toughness and allows for hysteresis-free, strain-rate-independent, and elastic behavior. This robust reinforcement is sustained in warm phosphate-buffered saline. These properties demonstrate the application potential of the developed hydrogel as a soft, elastic, and tough bio-strain sensor that can detect dynamic motions across various deformation speeds and ranges. The findings provide a simple yet effective approach to developing practical hydrogels with a desirable combination of strength/stiffness and toughness, in a fully swollen and equilibrated state.

Keywords: entanglement; hydrogel; hysteresis-free; mechanical properties; nanocomposite.