Bioinformatics Analysis of Global Diversity in Meningococcal Vaccine Antigens over the Past 10 Years: Vaccine Efficacy Prognosis

Med Sci (Basel). 2023 Dec 1;11(4):76. doi: 10.3390/medsci11040076.

Abstract

Neisseria meningitidis (N. meningitidis) serogroup B (MenB) is the leading cause of invasive meningococcal disease worldwide. The pathogen has a wide range of virulence factors, which are potential vaccine components. Studying the genetic variability of antigens within a population, especially their long-term persistence, is necessary to develop new vaccines and predict the effectiveness of existing ones. The multicomponent 4CMenB vaccine (Bexsero), used since 2014, contains three major genome-derived recombinant proteins: factor H-binding protein (fHbp), Neisserial Heparin-Binding Antigen (NHBA) and Neisserial adhesin A (NadA). Here, we assessed the prevalence and sequence variations of these vaccine antigens in a panel of 5667 meningococcal isolates collected worldwide over the past 10 years and deposited in the PubMLST database. Using multiple amino acid sequence alignments and Random Forest Classifier machine learning methods, we estimated the potential strain coverage of fHbp and NHBA vaccine variants (51 and about 25%, respectively); the NadA antigen sequence was found in only 18% of MenB genomes analyzed, but cross-reactive variants were present in less than 1% of isolates. Based on our findings, we proposed various strategies to improve the 4CMenB vaccine and broaden the coverage of N. meningitidis strains.

Keywords: Neisseria meningitidis serogroup B; bioinformatics tools; machine learning methods; meningococcal vaccine; multiple amino acid sequence alignments.

MeSH terms

  • Adhesins, Bacterial / genetics
  • Antigens, Bacterial / genetics
  • Computational Biology
  • Humans
  • Meningococcal Infections* / prevention & control
  • Meningococcal Vaccines* / genetics
  • Neisseria
  • Neisseria meningitidis* / genetics
  • Neisseria meningitidis, Serogroup B* / genetics
  • Prognosis
  • Vaccine Efficacy

Substances

  • Antigens, Bacterial
  • Meningococcal Vaccines
  • Adhesins, Bacterial

Grants and funding

This research received no external funding.