Detection Method of Fungal Spores Based on Fingerprint Characteristics of Diffraction-Polarization Images

J Fungi (Basel). 2023 Nov 24;9(12):1131. doi: 10.3390/jof9121131.

Abstract

The most significant aspect of promoting greenhouse productivity is the timely monitoring of disease spores and applying proactive control measures. This paper introduces a method to classify spores of airborne disease in greenhouse crops by using fingerprint characteristics of diffraction-polarized images and machine learning. Initially, a diffraction-polarization imaging system was established, and the diffraction fingerprint images of disease spores were taken in polarization directions of 0°, 45°, 90° and 135°. Subsequently, the diffraction-polarization images were processed, wherein the fingerprint features of the spore diffraction-polarization images were extracted. Finally, a support vector machine (SVM) classification algorithm was used to classify the disease spores. The study's results indicate that the diffraction-polarization imaging system can capture images of disease spores. Different spores all have their own unique diffraction-polarization fingerprint characteristics. The identification rates of tomato gray mold spores, cucumber downy mold spores and cucumber powdery mildew spores were 96.02%, 94.94% and 96.57%, respectively. The average identification rate of spores was 95.85%. This study can provide a research basis for the identification and classification of disease spores.

Keywords: diffraction–polarization images; disease spores; image processing; support vector machines.