Dynamic Response of the cbbL Carbon Sequestration Microbial Community to Wetland Type in Qinghai Lake

Biology (Basel). 2023 Dec 7;12(12):1503. doi: 10.3390/biology12121503.

Abstract

The soil carbon storage in the Qinghai-Tibet Plateau wetlands is affected by microbiota and wetland types, but the response mechanisms of carbon sequestration microorganisms on the Qinghai-Tibet Plateau to different wetland types are still poorly described. To explore the differences in carbon sequestration microbial communities in different wetlands and the main influencing factors, this study took a marsh wetland, river source wetland and lakeside wetland of Qinghai Lake as the research objects and used high-throughput sequencing to study the functional gene, cbbL, of carbon sequestration microorganisms. The results showed that the dominant bacterial group of carbon sequestration microorganisms in marsh and river source wetlands was Proteobacteria, and the dominant bacterial group in the lakeside wetland was Cyanobacteria. The alpha diversity, relative abundance of Proteobacteria and total carbon content were the highest in the marsh wetland, followed by the river source wetland, and they were the lowest in the lakeside wetland. In addition, the physical and chemical characteristics of the three wetland types were significantly different, and the soil temperature and moisture and total carbon content were the most important factors affecting the community structures of carbon-sequestering microorganisms. There was little difference in the total nitrogen contents between the marsh wetland and river source wetland. However, the total nitrogen content was also an important factor affecting the diversity of the carbon sequestration microbial community. In summary, the wetland type significantly affects the process of soil carbon sequestration. Compared with the riverhead and lakeside wetlands, the marsh wetland has the highest carbon storage.

Keywords: Qinghai–Tibet Plateau; carbon cycle; carbon fixation; carbon sequestration microorganisms; climate change.