C-undecylcalix[4]resorcinarene Langmuir-Blodgett/Porous Reduced Graphene Oxide Composite Film as a Electrochemical Sensor for the Determination of Tryptophan

Biosensors (Basel). 2023 Dec 10;13(12):1024. doi: 10.3390/bios13121024.

Abstract

In this study, a composite film was developed for the electrochemical sensing of tryptophan (Trp). Porous reduced graphene oxide (PrGO) was utilized as the electron transfer layer, and a C-undecylcalix[4]resorcinarene Langmuir-Blodgett (CUCR-LB) film served as the molecular recognition layer. Atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy, scanning electron microscopy (SEM), and electrochemical experiments were employed to analyze the characteristics of the CUCR-LB/PrGO composite film. The electrochemical behavior of Trp on the CUCR-LB/PrGO composite film was investigated, revealing a Trp linear response range of 1.0 × 10-7 to 3.0 × 10-5 mol L-1 and a detection limit of 3.0 × 10-8 mol L-1. Furthermore, the developed electroanalytical method successfully determined Trp content in an amino acid injection sample. This study not only introduces a rapid and reliable electrochemical method for the determination of Trp but also presents a new strategy for constructing high-performance electrochemical sensing platforms.

Keywords: Langmuir–Blodgett film; calix[4]arene; electrochemical sensing; porous reduced graphene oxide; tryptophan.

MeSH terms

  • Electrochemical Techniques
  • Graphite* / chemistry
  • Porosity
  • Tryptophan*

Substances

  • graphene oxide
  • Tryptophan
  • resorcinarene
  • Graphite