HIO3-HIO2-Driven Three-Component Nucleation: Screening Model and Cluster Formation Mechanism

Environ Sci Technol. 2024 Jan 9;58(1):649-659. doi: 10.1021/acs.est.3c06098. Epub 2023 Dec 22.

Abstract

Iodine oxoacids (HIO3 and HIO2)-driven nucleation has been suggested to efficiently contribute to new particle formation (NPF) in marine atmospheres. Abundant atmospheric nucleation precursors may further enhance HIO3-HIO2-driven nucleation through various multicomponent nucleation mechanisms. However, the specific enhancing potential (EP) of different precursors remains largely unknown. Herein, the EP-based screening model of precursors and enhancing mechanism of the precursor with the highest EP on HIO3-HIO2 nucleation were investigated. The formation free energies (ΔG), as critical parameters for evaluating EP, were calculated for the dimers of 63 selected precursors with HIO2. Based on the ΔG values, (1) a quantitative structure-activity relationship model was developed for evaluating ΔG of other precursors and (2) atmospheric concentrations of 63 (precursor)1(HIO2)1 dimer clusters were assessed to identify the precursors with the highest EP for HIO3-HIO2-driven nucleation by combining with earlier results for the nucleation with HIO3 as the partner. Methanesulfonic acid (MSA) was found to be one of the precursors with the highest EP. Finally, we found that MSA can effectively enhance HIO3-HIO2 nucleation at atmospheric conditions by studying larger MSA-HIO3-HIO2 clusters. These results augment our current understanding of HIO3-HIO2 and MSA-driven nucleation and may suggest a larger impact of HIO2 in atmospheric aerosol nucleation.

Keywords: iodic acid; iodous acid; methanesulfonic acid; nucleation; quantum chemical calculation.

MeSH terms

  • Atmosphere*
  • Climate*
  • Mesylates

Substances

  • methanesulfonic acid
  • Mesylates