The fate of antibiotic resistance genes during anaerobic digestion of sewage sludge with ultrasonic pretreatment

Environ Sci Pollut Res Int. 2024 Jan;31(4):5513-5525. doi: 10.1007/s11356-023-31558-6. Epub 2023 Dec 21.

Abstract

This study investigated the effect of ultrasonic (US) pretreatment at three different contact times (30, 45, and 60 min) with a power of 240 W and frequency of 40 kHz on the fate of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and enteric pathogens during anaerobic digestion (AD) of sludge. By using real time-qPCR, three MGEs (int1, int2, and tnpA) and seven ARGs (sul1, sul2, tetW, tetA, tetO, ermF, and aac(6')-lb) were quantified that have serious human health impacts and represent the most widely used antibiotics (tetracycline, sulfonamide, macrolide, and aminoglycoside). Results indicated that US pretreatment under different contact times improved the removal of ARGs and MGEs. Compared to 30 and 45 min of US pretreatment, 60 min of US pretreatment resulted in a higher reduction of ARGs with total ARG reduction of 41.70 ± 1.13%. Furthermore, the relative abundance of ARGs and MGEs after US pretreatment was reduced more effectively in anaerobic reactors than in a control AD without US pretreatment. The total ARGs and MGEs removal efficiency of control AD was 44.07 ± 0.72% and 63.69 ± 1.43%, and if US pretreatment at different times were applied, the total ARGs and MGEs removal efficiency of the whole pretreatment AD process improved to 59.71 ± 2.76-68.54 ± 1.58% and 69.82 ± 2.15-76.84 ± 0.22%. The highest removal of total ARGs (68.54 ± 1.58%) and MGEs (76.84 ± 0.22%) was achieved after AD with US pretreatment at 45 min. However, US pretreatment and AD with US pretreatment were not effective in inactivation of enteric pathogens (total coliforms and E. coli), suggesting that posttreatment is needed prior to land application of sludge to reduce the level of enteric pathogens. There was no detection of the studied ARGs and MGEs in the enteric pathogens after US pretreatment in subsequent AD. According to this study, long contact times of US pretreatment can mitigate ARGs and MGEs in AD processes, offering valuable insight into improving environmental safety and sustainable waste management. Additionally, the study highlights the need to investigate posttreatment techniques for reducing enteric pathogens in AD effluent, a crucial consideration for agricultural use and environmental protection.

Keywords: Anaerobic digestion; Antibiotic resistance genes; Enteric indicator bacteria; Sewage sludge; Ultrasonic pretreatment.

MeSH terms

  • Anaerobiosis
  • Anti-Bacterial Agents* / pharmacology
  • Drug Resistance, Microbial / genetics
  • Escherichia coli
  • Genes, Bacterial
  • Humans
  • Sewage*
  • Ultrasonics

Substances

  • Sewage
  • Anti-Bacterial Agents