Novel Thermoelectric Fabric Structure with Switched Thermal Gradient Direction toward Wearable In-Plane Thermoelectric Generators

Small. 2023 Dec 21:e2306830. doi: 10.1002/smll.202306830. Online ahead of print.

Abstract

Wearable thermoelectric generators (TEGs) have exhibited great potential to convert the temperature gradient between the human body and the environment into electrical energy for maintenance-free wearable applications. A 2D planar device structure is widely employed for fabricating flexible TEGs due to its simple structure and facile fabrication properties. However, this device configuration is more appropriate for utilizing in-plane temperature differences than the out-of-plane direction, which limits their application in wearable cases since the temperature difference between the human body and the environment is in the out-of-plane direction. To solve this problem, a novel fabric-based TEG structure that can utilize the out-of-plane temperature gradient is proposed in this work. By introducing thermally conductive components in the generator, the out-of-plane temperature difference can be switched to the in-plane direction, which can be further utilized for 2D planar devices in wearable applications. The prepared thermoelectric fabric prototype with only 12 p-type TE legs exhibits a maximum open-circuit voltage of 4.69 mV and an output power of 39.7 nW at a temperature difference of 30 K. This strategy exhibits a high degree of versatility and can be readily applied to other 2D planar TEGs, thus expanding their potential application in wearable technology.

Keywords: device structure; fabric; temperature gradient; thermoelectric generator; wearable electronics.