Dynamic Human Brain Imaging with a Portable PET Camera: Comparison to a Standard Scanner

J Nucl Med. 2024 Feb 1;65(2):320-326. doi: 10.2967/jnumed.122.265309.

Abstract

Portable, cost-effective PET cameras can radically expand the applicability of PET. We present here a within-participant comparison of fully quantified [18F]FDG dynamic scans in healthy volunteers using the standard Biograph mCT scanner and portable CerePET scanner. Methods: Each of 20 healthy volunteers underwent dynamic [18F]FDG imaging with both scanners (1-154 d apart) and concurrent arterial blood sampling. Tracer SUV, net influx rate (Ki), and the corresponding cerebral metabolic rate of glucose (CMRglu) were quantified at regional and voxel levels. Results: At the regional level, CerePET outcome measure estimates within participants robustly correlated with Biograph mCT estimates in the neocortex, wherein the average Pearson correlation coefficients across participants ± SD were 0.83 ± 0.07 (SUV) and 0.85 ± 0.08 (Ki and CMRglu). There was also strong agreement between CerePET and Biograph mCT estimates, wherein the average regression slopes across participants were 0.84 ± 0.17 (SUV), 0.83 ± 0.17 (Ki), and 0.85 ± 0.18 (CMRglu). There was similar bias across participants but higher correlation and less variability in subcortical regions than in cortical regions. Pearson correlation coefficients for subcortical regions equaled 0.97 ± 0.02 (SUV) and 0.97 ± 0.03 (Ki and CMRglu), and average regression slopes equaled 0.79 ± 0.14 (SUV), 0.83 ± 0.11 (Ki), and 0.86 ± 0.11 (CMRglu). In voxelwise assessment, CerePET and Biograph mCT estimates across outcome measures were significantly different only in a cluster of left frontal white matter. Conclusion: Our results indicate robust correlation and agreement between semi- and fully quantitative brain glucose metabolism measurements from portable CerePET and standard Biograph mCT scanners. The results obtained with a portable PET scanner in this comparison in humans require follow-up but lend confidence to the feasibility of more flexible and portable brain imaging with PET.

Keywords: SUV; human; metabolic rate of glucose; net influx rate; portable PET.

MeSH terms

  • Fluorodeoxyglucose F18*
  • Glucose / metabolism
  • Humans
  • Neocortex* / metabolism
  • Neuroimaging
  • Positron-Emission Tomography / methods

Substances

  • Fluorodeoxyglucose F18
  • Glucose