Real-world application of PBPK in drug discovery

Drug Metab Dispos. 2023 Dec 12:DMD-MR-2022-001036. doi: 10.1124/dmd.122.001036. Online ahead of print.

Abstract

The utility of PBPK models in support of drug development has been well documented. During the discovery stage, PBPK has increasingly been applied for early risk assessment, prediction of human dose, toxicokinetic dose projection and early formulation assessment. Previous review articles have proposed model building and application strategies for PBPK-based first in human predictions with comprehensive descriptions of the individual components of PBPK models. This includes the generation of decision trees, based on comprehensive literature reviews, to guide the application of PBPK in the discovery setting. The goal of this mini review is to provide additional guidance on the real-world application of PBPK, in support of the discovery stage of drug development. In this mini review, our goal is to provide guidance on the typical steps involved in the development and application of a PBPK model during drug discovery to assist in decision making. We have illustrated our recommended approach through description of case examples, where PBPK has been successfully applied to aid in human PK projection, candidate selection and prediction of drug interaction liability for parent and metabolite. Through these case studies, we have highlighted fundamental issues, including pre-verification in preclinical species, the application of empirical scalars in the prediction of in vivo clearance from in vitro systems, in silico prediction of permeability and the exploration of aqueous and biorelevant solubility data to predict dissolution. In addition, current knowledge gaps have been highlighted and future directions proposed. Significance Statement Through description of three case studies, we have highlighted the fundamental principles of PBPK application during drug discovery. These include pre-verification of the model in preclinical species, application of empirical scalars where necessary in the prediction of clearance, in silico prediction of permeability, and the exploration of aqueous and biorelevant solubility data to predict dissolution. In addition, current knowledge gaps have been highlighted and future directions proposed.

Keywords: Drug development; Drug interactions; animal/nonclinical/preclinical; drug absorption; drug clearance; drug disposition; human pharmacokinetics; in vitro-in vivo prediction (IVIVE); pharmacokinetic modeling; physiologically-based pharmacokinetic modeling/PBPK.