Development, Characterization, and Radiation Dosimetry Studies of 18F-BMS-986229, a 18F-Labeled PD-L1 Macrocyclic Peptide PET Tracer

Mol Imaging Biol. 2024 Apr;26(2):301-309. doi: 10.1007/s11307-023-01889-4. Epub 2023 Dec 20.

Abstract

Purpose: In cancer immunotherapy, the blockade of the interaction between programmed death-1 and its ligand (PD-1:PD-L1) has proven to be one of the most promising strategies. However, as mechanisms of resistance to PD-1/PD-L1 inhibition include variability in tumor cell PD-L1 expression in addition to standard tumor biopsy PD-L1 immunohistochemistry (IHC), a comprehensive and quantitative approach for measuring PD-L1 expression is required. Herein, we report the development and characterization of an 18F-PD-L1-binding macrocyclic peptide as a PET tracer for the comprehensive evaluation of tumor PD-L1 expression in cancer patients.

Procedures: 18F-BMS-986229 was characterized for PD-L1 expression assessment by autoradiography or PET imaging. 18F-BMS-986229 was utilized to evaluate tumor PD-L1 target engagement in competition with a macrocyclic peptide inhibitor of PD-L1 (BMS-986189) over a range of doses using PET imaging. A whole-body radiation dosimetry study of 18F-BMS-986229 in healthy non-human primates (NHPs) was performed.

Results: In vitro autoradiography showed an 8:1 binding ratio in L2987(PD-L1 +) vs. HT-29 (PD-L1-) tumors, more than 90% of which could be blocked with 1 nM of BMS-986189. Ex vivo autoradiography showed that 18F-BMS-986229 detection was penetrant over a series of sections spanning the entire L2987 tumor. In vivo PET imaging in mice demonstrated a 5:1 tracer uptake ratio (at 90-100 min after tracer administration) in L2987 vs. HT-29 tumors and demonstrated 83%-93% specific binding of BMS-986189 within those dose ranges. In a healthy NHP dosimetry study, the resultant whole-body effective dose was 0.025 mSv/MBq.

Conclusion: 18F-BMS-986229 has been preclinically characterized and exhibits high target specificity, low background uptake, and a short blood half-life supportive of same day imaging in the clinic. As the PET tracer, 18F-BMS-986229 shows promise in the quantification of PD-L1 expression, and its use in monitoring longitudinal changes in patients may provide insights into PD-1:PD-L1 immuno-therapy treatment outcomes.

Keywords: 18F-labeled macrocyclic peptide; PD-1:PD-L1 checkpoint inhibitor; Preclinical PET imaging.

MeSH terms

  • Animals
  • B7-H1 Antigen* / metabolism
  • Humans
  • Mice
  • Neoplasms*
  • Peptides
  • Positron-Emission Tomography / methods
  • Programmed Cell Death 1 Receptor
  • Radiometry

Substances

  • B7-H1 Antigen
  • Programmed Cell Death 1 Receptor
  • Peptides