Experimental investigation of the period-adding bifurcation route to chaos in plasma

Phys Rev E. 2023 Nov;108(5-2):055210. doi: 10.1103/PhysRevE.108.055210.

Abstract

Since the characteristic timescales of the various transport processes inside the discharge plasma span several orders of magnitude, it can be regarded as a typical fast-slow system. Interestingly, in this work, a special kind of complex oscillatory dynamics composed of a series of large-amplitude relaxation oscillations and small-amplitude near-harmonic oscillations, namely, mixed-mode oscillations (MMOs), was observed. By using the ballast resistance as the control parameter, a period-adding bifurcation sequence of the MMOs, i.e., from L^{s} to L^{s+1}, was obtained in a low-pressure DC glow discharge system. Meanwhile, a series of intermittently chaotic regions caused by inverse saddle-node bifurcation was embedded between the two adjacent periodic windows. The formation mechanism of MMOs was analyzed, and the results indicated that the competition between electron production and electron loss plays an important role. Meanwhile, the nonlinear time series analysis technique was used to study the dynamic behavior quantitatively. The attractor in the reconstructed phase space indicated the existence of the homoclinic orbits of type Γ^{-}. In addition, by calculating the largest Lyapunov exponent (LLE), the chaotic nature of these states was confirmed and quantitatively characterized. With the decrease in the ballast resistance, the return map of the chaotic state gradually changed from the nearly one-dimensional single-peak structure to the multibranch structure, which indicates that the dissipation of the system decreased. By further calculating the correlation dimension, it was shown that the complexity of the strange attractors increased for higher-order chaotic states.