Correlation between serum iron levels and pulmonary function: A cross-sectional analysis based on NHANES database 5319 cases

Medicine (Baltimore). 2023 Dec 15;102(50):e36449. doi: 10.1097/MD.0000000000036449.

Abstract

Pulmonary function, one of the main indicators of respiratory system assessment, is difficult to measure in specific cases. The study investigated the association between serum iron levels and pulmonary function. The cross-sectional study was conducted using data from 5319 participants from the 2010-2012 National Health and Nutrition Examination Survey. Forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and forced expiratory flow from 25% to 75% of FVC were used as indicators of pulmonary function to analyze the relationship of serum iron and pulmonary function. Univariate and stratified analyses, multiple equation regression analysis, smoothed curve fitting analysis, and threshold effect analysis were performed to explore the relationship between pulmonary function and serum iron concentrations. Threshold effect analysis revealed a nonlinear relationship between serum iron levels and FVC, as well as FEV1, with inflection points observed at 8.1 (µmol/L) and 8.4 (µmol/L), respectively. When serum iron concentrations fell below the inflection point, there was no statistically significant relationship between serum iron and FVC (P = .065) or FEV1 (P = .095) (P > .005). However, when serum iron concentrations exceeded the inflection point, both FVC (β = 6.87; 95% confidence interval [CI] = 3.95, 9.79; P < .0001) and FEV1 (β = 7.09; 95% CI = 4.54, 9.64; P < .0001) exhibited a positive correlation with increasing serum iron levels. Additionally, forced expiratory flow from 25% to 75% of FVC (mL/s) demonstrated a positive association with serum iron (β = 6.72; 95% CI = 2.30, 11.13; P = .0029). Serum iron level was positively correlated with pulmonary function within a certain range of serum iron concentration. Serum iron level may be a protective factor for pulmonary function.

MeSH terms

  • Cross-Sectional Studies
  • Forced Expiratory Volume
  • Humans
  • Iron*
  • Lung*
  • Nutrition Surveys
  • Vital Capacity

Substances

  • Iron