Novel insights into the regulatory role of N6-methyladenosine methylation modified autophagy in sepsis

Aging (Albany NY). 2023 Dec 18;15(24):15676-15700. doi: 10.18632/aging.205312. Epub 2023 Dec 18.

Abstract

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It is characterized by high morbidity and mortality and one of the major diseases that seriously hang over global human health. Autophagy is a crucial regulator in the complicated pathophysiological processes of sepsis. The activation of autophagy is known to be of great significance for protecting sepsis induced organ dysfunction. Recent research has demonstrated that N6-methyladenosine (m6A) methylation is a well-known post-transcriptional RNA modification that controls epigenetic and gene expression as well as a number of biological processes in sepsis. In addition, m6A affects the stability, export, splicing and translation of transcripts involved in the autophagic process. Although it has been suggested that m6A methylation regulates the biological metabolic processes of autophagy and is more frequently seen in the progression of sepsis pathogenesis, the underlying molecular mechanisms of m6A-modified autophagy in sepsis have not been thoroughly elucidated. The present article fills this gap by providing an epigenetic review of the processes of m6A-modified autophagy in sepsis and its potential role in the development of novel therapeutics.

Keywords: autophagy; m6A methylation; sepsis.

MeSH terms

  • Autophagy
  • Humans
  • Methylation
  • Multiple Organ Failure*
  • Sepsis* / genetics