Structure-guided screening of protein-protein interaction for the identification of Myc-Max heterodimer complex modulators

J Biomol Struct Dyn. 2023 Dec 18:1-19. doi: 10.1080/07391102.2023.2294174. Online ahead of print.

Abstract

De-regulation of oncogenic myelocytomatosis (c-Myc or Myc) transcription factor is one of the most common molecular anomalies encountered in human cancers, and it is typically linked to many aggressive malignancies including breast, lung, cervix, colon glioblastomas, and other haematological organs. The Myc belongs to the basic helix-loop-helix zipper protein family (bHLH-ZIP), and its dimerization with another principal interactor protein partner Myc-associated factor X (Max) is essentially required for cellular transformation, cell growth and proliferation, and transcriptional activation. Intermolecular interactions have been evaluated between hetero-dimer Myc-Max protein, which identified protein-protein interaction (PPI) specific modulators using highly précised molecular docking study followed by long-range interaction stability analyzed through molecular dynamic (MD) simulation. Moreover, ADME profile analyses have been estimated for screened hit compounds. MM-GBSA-based binding free energy (ΔG) estimations have been performed for all screened hit compounds obtained from multi-step molecular docking-based virtual screening technique. According to the employed various rigorous multi-chemometric techniques, four identified inhibitors/modulators appear to have a considerable number of intermolecular contacts with hotspot residues in the hetero-dimer interface region of the Myc-Max PPI complex. However, identified hit compounds might need further structural optimization or extensive biophysical analyses for better understanding of the molecular mechanism for exhibiting the Myc-Max PPI interface binding stability.Communicated by Ramaswamy H. Sarma.

Keywords: MM-GBSA; Myc-Max protein; cancer; molecular docking; molecular dynamics; protein-protein interaction; virtual screening.