Structural stability design of an optical mirror mount adjustment mechanism

Appl Opt. 2023 Dec 10;62(35):9291-9298. doi: 10.1364/AO.501644.

Abstract

The stability of beam pointing in a laser system depends on the consistency of the optical mirror mount. Typically, a locking mechanism is used to secure the adjustment mechanism after beam alignment, ensuring the mount's stability. However, this process can introduce errors, causing a drift in the optical path. To mitigate this issue, in this study, an interference fit adjustment screw was designed. This development enables the mechanism to self-lock after beam alignment, thereby preventing optical path drift and enhancing overall stability. Specifically, 14 long-term thermal shock stability tests, each lasting 2500 min, were conducted to validate the proposed design. The experimental results showed that the thermal drift of the interference fit adjustment screw was reduced by 47.16%, thermal shift was reduced by 79.59%, and the long-term stability improved by at least 48.67%.