Experimental Investigation of Using Manganese Monoxide as a Hydrogen Sulfide Scavenger for Aqueous Drilling Fluids

ACS Omega. 2023 Nov 29;8(49):46738-46745. doi: 10.1021/acsomega.3c05740. eCollection 2023 Dec 12.

Abstract

One of the most serious safety and health concerns during drilling oil and gas wells is the potential release of hydrogen sulfide (H2S) to the surface, exposing workers to high risks. Serious corrosion-related damage to handling equipment is also inevitable in the presence of H2S. Various H2S scavengers have been utilized, but each has its pros and cons; hence, research is continuing to develop an optimum and feasible scavenger. Since manganese monoxide (MnO) is a reactive metal oxide with high oxidation and absorption capabilities, it may have the potential to effectively scavenge H2S during drilling operations when included in drilling mud formulations. Consequently, the key aim of this work is to investigate the H2S scavenging performance of the aqueous drilling fluid containing MnO. This work studied the impact of MnO addition on the drilling mud's alkalinity, rheological behavior, filtration performance, and corrosion tendency. The experiments were also conducted for mud without a scavenger and a fluid containing the SourScav commercial scavenger, which serves as a benchmarking reference. The findings demonstrated that MnO performed exceptionally well for H2S scavenging where it boosted the aqueous mud's scavenging capacity from 84.3 to 426.2 mg of H2S/L of mud, showing more than 400% improvement relative to the base mud. Additionally, this scavenging performance is about 2.1 times higher than that of the commercial scavenger. As opposed to SourScav, MnO maintained the mud's pH at a safe level above 10. The addition of either MnO or SourScav did not weaken the mud rheology and provided practically satisfactory rheological parameters. Both SourScav and MnO marginally increased the formed filter-cake thickness from 2.9 to 3.9 mm with a slight increment in the filtrated volume but still within the acceptable limits. The corrosion test indicated the noncorrosive characteristics (i.e., the corrosion rate was nearly zero) of MnO and the commercial scavenger. This study illustrates the promising utilization of MnO as a cost-effective H2S scavenger, enhancing the efficiency and safety of drilling operations.