Nitrogen Defect-Rich Graphitic Carbon Nitride for Highly Sensitive Voltammetric Determination of Tryptophan

ACS Omega. 2023 Nov 30;8(49):46869-46877. doi: 10.1021/acsomega.3c06487. eCollection 2023 Dec 12.

Abstract

Here, a highly sensitive electrochemical sensor for detection of tryptophan (Trp) using a nitrogen defect graphitic carbon nitride-modified glassy carbon electrode (ND-CN/GCE) was introduced. ND-CN/GCE showed a higher oxidation current for Trp than the graphitic carbon nitride-modified glassy carbon electrode (g-CN/GCE) and bare glassy carbon electrode (BGCE). The synthesized nitrogen defect-rich graphitic carbon nitride (ND-CN) was characterized using X-ray photoelectron spectroscopy, X-ray diffraction spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. Electrochemical impedance spectroscopy and cyclic voltammetry were used to further analyze the electrochemical properties of BGCE, g-CN/GCE, and ND-CN/GCE. The oxidation of Trp at ND-CN/GCE is a diffusion-controlled process at pH 3.0. It was calculated that the transfer coefficient, rate constant, and diffusion coefficient of Trp were 0.53, 2.24 × 103 M-1 s-1, and 8.3 × 10-3 cm2 s-1, respectively, at ND-CN/GCE. Trp was detected using square wave voltammetry, which had a linear range from 0.01 to 40 μM at pH 3.0 and a limit of detection of about 0.0034 μM (3σ/m). Analyzing the presence of Trp in a milk and multivitamin tablet sample with a percentage recovery in the range of 97.0-108% satisfactorily demonstrated the practical usability of the electrochemical sensor. The ND-CN/GCE additionally displays good repeatability and reproducibility and satisfactory selectivity.