Mass mortality event of the giant barrel sponge Xestospongia sp.: population dynamics and size distribution in Koh Phangan, Gulf of Thailand

PeerJ. 2023 Dec 12:11:e16561. doi: 10.7717/peerj.16561. eCollection 2023.

Abstract

Marine sponges are prominent organisms of the benthic coral reef fauna, providing important ecosystem services. While there have been increasing reports that sponges are becoming one of the dominant benthic organisms in some locations and ecoregions (e.g. Caribbean), they can be impacted by changing environmental conditions. This study presents the first documentation of a mass mortality event of the barrel sponge Xestospongia sp. in the lower Gulf of Thailand and its consequences on population dynamics and size distribution. Two anthropogenic impacted reefs (Haad Khom and Mae Haad) of the island Koh Phangan and two anthropogenic non-impacted reefs of the islands Koh Yippon and Hin Yippon within the Mu Ko Ang Thong Marine National Park were surveyed in the years 2015 and 2016. The results showed a strong shift in population densities at Koh Phangan. Fatal "bleaching" ending up in mass mortality was observed for these reefs in 2015. Xestospongia sp. abundance decreased from 2015 to 2016 by 80.6% at Haad Khom and by 98.4% at Mae Haad. Sponges of all sizes were affected, and mortality occurred regardless of the survey depth (4 and 6 m). However, Xestospongia population densities in the Marine Park were at a constant level during the surveys. The abundances in 2015 were 65% higher at the Marine Park than at Koh Phangan and 92% higher in 2016. The most likely causes of the mass mortality event was a local harmful algal bloom event, pathogens, undetected local higher water temperatures, or a combination of these factors, whereas sea surface temperature analyses showed no marine heatwave during the observed mass mortality event in 2015. Considering the ecological importance of sponges such as Xestospongia sp., long-term monitoring of reefs and their environmental parameters should be implemented to prevent such mass die-offs.

Keywords: Harmful algal bloom; Indo-Pacific; Marine heatwave; Mass mortality; Sponge population decrease; Xestospongia sp..

MeSH terms

  • Animals
  • Ecosystem
  • Population Dynamics
  • Porifera*
  • Thailand / epidemiology
  • Xestospongia*

Grants and funding

The authors received no funding for this work.