Identifying hotspots of woody plant diversity and their relevance with home ranges of the critically endangered gibbon (Nomascus hainanus) across forest landscapes within a tropical nature reserve

Front Plant Sci. 2023 Dec 1:14:1283037. doi: 10.3389/fpls.2023.1283037. eCollection 2023.

Abstract

Introduction: To achieve effective conservation objectives, it is crucial to map biodiversity patterns and hotspots while considering multiple influencing factors. However, focusing solely on biodiversity hotspots is inadequate for species conservation on a landscape scale. This emphasizes the importance of integrating hotspots with the home ranges of species to identify priority conservation areas.

Methods: Compiling the vegetation data with environmental and anthropogenic disturbance data collected from kilometer-grid plots in Bawangling Nature Reserve, Hainan, China, we analyzed the spatial distribution of plant diversity (species richness and Shannon-Wiener index), as well as the main drivers affecting these patterns. We also investigated the spatial distribution of hotspots using a threshold approach and compared them with the home ranges of the flagship species, Hainan gibbon (Nomascus hainanus).

Result: Climate and soil are predominant drivers shaping the spatial pattern of plant diversity in Bawangling Nature Reserve, surpassing the influence of anthropogenic disturbance and topographic factors. Both diversity indices exhibit a generally similar pattern with exceptions in surrounding areas of Futouling and Elongling. The hotspots identified by the Shannon-Wiener index showed a higher spatial overlap with the home ranges of Hainan gibbon compared to the species richness hotspots. The recently established Hainan gibbon Group E in 2019, located 8 km away from the original Futouling habitat, does not coincide with identified hotspots.

Discussion: Our findings indicate that the hotspots of plant diversity within the habitat of Hainan gibbon Group E are relatively limited, emphasizing the necessity of giving precedence to its conservation. Integrating hotspots with the home ranges of critically endangered species offers decision-makers valuable information to establish rational conservation networks in the context of changing environments, as well as a reference for habitat restoration of species.

Keywords: Hainan gibbon; anthropogenic disturbance; hotspots; plant diversity pattern; species conservation; tropical rainforest.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research is supported by the National Natural Science Foundation of China (U22A20503).