Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation

bioRxiv [Preprint]. 2023 Dec 7:2023.12.05.570162. doi: 10.1101/2023.12.05.570162.

Abstract

Microglia are important players in surveillance and repair of the brain. Their activation mediates neuroinflammation caused by intracortical microelectrode implantation, which impedes the application of intracortical brain-computer interfaces (BCIs). While low-intensity pulsed ultrasound stimulation (LIPUS) can attenuate microglial activation, its potential to modulate the microglia-mediated neuroinflammation and enhance the bio-integration of microelectrodes remains insufficiently explored. We found that LIPUS increased microglia migration speed from 0.59±0.04 to 1.35±0.07 µm/hr on day 1 and enhanced microglia expansion area from 44.50±6.86 to 93.15±8.77 µm 2 /min on day 7, indicating improved tissue healing and surveillance. Furthermore, LIPUS reduced microglial activation by 17% on day 6, vessel-associated microglia ratio from 70.67±6.15 to 40.43±3.87% on day 7, and vessel diameter by 20% on day 28. Additionally, microglial coverage of the microelectrode was reduced by 50% in week 1, indicating better tissue-microelectrode integration. These data reveal that LIPUS helps resolve neuroinflammation around chronic intracortical microelectrodes.

Publication types

  • Preprint