Cytoarchitectonic and connection stripes in the dysgranular insular cortex in the macaque monkey

J Comp Neurol. 2023 Dec;531(18):2019-2043. doi: 10.1002/cne.25571. Epub 2023 Dec 17.

Abstract

The insula has been classically divided into broad granular, dysgranular, and agranular architectonic sectors. We previously proposed a novel partition, dividing each sector into four to seven sharply delimited architectonic areas, with the dysgranular areas being possibly further subdivided into subtle horizontal partitions or "stripes." In architectonics, discrete subparcellations are prone to subjective variability and need being supported with additional neuroanatomical methods. Here, using a secondary analysis of indirect connectional data in the rhesus macaque monkey, we examined the spatial relationship between the dysgranular architectonic stripes and tract-tracing labeling patterns produced in the insula with injections of neuronal tracers in other cortical regions. The injections consistently produced sharply delimited patches of anterograde and/or retrograde labeling, which formed stripes across consecutive coronal sections of the insula. While the overall pattern of labeling on individual coronal sections varied with the injection site, the boundaries of the patches consistently coincided with architectonic boundaries on an adjacent cyto- (Nissl) and/or myelo- (Gallyas) architectonic section. This overlap supports the existence of a fine dysgranular stripe-like partition of the primate insula, with possibly major implications for interoceptive processing in primates including humans. The modular organization of the insula could underlie a serial stream of integration from a dorsal primary interoceptive cortex toward progressively more ventral egocentric "self-agency" and allocentric "social" dysgranular processing units.

Keywords: anterograde; insula; interoception; retrograde; tract-tracing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cerebral Cortex*
  • Humans
  • Insular Cortex*
  • Macaca mulatta
  • Neurons