Magnetic Prussian blue nanoshells are controllable anchored on the surface of molybdenum disulfide nanosheets for efficient separation of radioactive cesium from water

Sci Total Environ. 2024 Feb 20:912:169365. doi: 10.1016/j.scitotenv.2023.169365. Epub 2023 Dec 15.

Abstract

The rapid development of nuclear energy in China has led to increased attention to the treatment of radioactive wastewaters. Herein, a novel magnetic adsorbent, magnetic Prussian blue‑molybdenum disulfide (PB/Fe3O4/MoS2) nanocomposite, was prepared by a simple in-situ fixation of ferric oxide nanoparticles (Fe3O4 NPs) and Prussian Blue (PB) shell layers on the surface of molybdenum disulfide (MoS2) nanosheets carrier. The prepared PB/Fe3O4/MoS2 nanocomposites adsorbent displayed excellent fast magnetic separation and adsorption capacity of Cs+ (Qm = 80.51 mg/g) from water. The adsorption behavior of Cs+ by PB/Fe3O4/MoS2 conformed to Langmuir isothermal and second-order kinetic model, which belonged to chemical adsorption and endothermic reaction. The equilibrium adsorption capacity of PB/Fe3O4/MoS2 to Cs+ has reached 90 % in less than 110 min. Moreover, the adsorption properties of PB/Fe3O4/MoS2 remained good in the pH range of 2-7. Based on this, PB/Fe3O4/MoS2 complex was a fast and high selectivity adsorption material for Cs+, which was expected to be used in the practical treatment of cesium-containing radioactive wastewater.

Keywords: Ion exchange; Lewis's acid base effect; Radioactive wastewater; Shell layers.