Identification of Playa Lakes and tracking their evolution pathways using geochemical models in the Great Indian Thar desert

Sci Total Environ. 2024 Feb 20:912:169250. doi: 10.1016/j.scitotenv.2023.169250. Epub 2023 Dec 13.

Abstract

Playa Lakes of the great Indian Thar desert are unique and intricate systems with pronounced scientific and ecological significance. In this study, the combined use of geospatial and field data assisted in depicting and understanding the changes within these natural systems. The purpose of this study is to provide a comprehensive dataset of Playa Lakes, which can help with an overall understanding of playas from a geochemical, ecological, and economic perspective. The 1163 surface depressions were accounted for as possible playas considering the threshold area of >5 km2. A total of 42 representative surface water samples were collected from the selected playas (Sambhar, Didwana, Pachpadra, and Pokhran) and hydrochemical analysis was carried out to identify the geochemical evolution of these playas. The major water types were Na-Cl and Na-Cl-SO4 type. Hardie and Eugster's model was used to explain the possible sequence of evolutionary pathways and brine shifts in the selected playas. Simulated evaporation modeling suggests precipitation of major evaporites (chlorides, carbonates, and sulphates) during progressive evaporation. Surface sediment analysis (X-ray diffraction) confirmed the presence of calcite, halite, and dolomite minerals in the playa sediments. The greatest economic value of these playas may be mineral production and providing food and habitat for migratory birds, though conservation and policy intervention is required for their sustainable utilization.

Keywords: Evaporites; Hydrogeochemistry; MNDWI; PHREEQC; Playas; Thar Desert.