Coherent Spatial Control of Wave Packet Dynamics on Quantum Lattices

J Phys Chem Lett. 2023 Dec 28;14(51):11632-11639. doi: 10.1021/acs.jpclett.3c03047. Epub 2023 Dec 15.

Abstract

Quantum lattices are pivotal in the burgeoning fields of quantum materials and information science. Novel experimental techniques allow the preparation and monitoring of wave packet dynamics on quantum lattices with high spatiotemporal resolution. We present an analytical study of wave packet diffusivity and diffusion length on tight-binding quantum lattices subject to stochastic noise. Our analysis reveals the crucial role of spatial coherence and predicts a set of novel phenomena: (1) noise can enhance the transient diffusivity and diffusion length of spatially extended initial states; (2) standing or traveling initial states, with large momentum, spread faster than a localized initial state and exhibit a noise-induced peak in the transient diffusivity; (3) the differences in the diffusivity or diffusion length of extended and localized initial states have a universal dependence on initial width. These predictions suggest the possibility of controlling the wave packet dynamics by spatial manipulations, which will have implications for materials science and quantum technologies.