Integrating key generation and distribution with the quantum noise stream cipher system without compromising the transmission performance

Opt Lett. 2023 Dec 15;48(24):6500-6503. doi: 10.1364/OL.503743.

Abstract

We propose and experimentally demonstrate a secure quantum noise stream cipher transmission system that integrates key generation and distribution. At the stage of carrier phase recovery, the estimated phase noise is used to generate randomness keys without additional equipment. Based on direct sequence spread spectrum technology, we integrate the distributed keys with quantum noise stream cipher signals. The key distribution and encryption transmission can be completed simultaneously without occupying additional bandwidth or time slots. By changing the position of distributed keys in the encryption base, the BER performance of QAM/QNSC signals cannot be affected by the keys. Experimental results demonstrate that the 54.5 Mbps key distribution and 31 Gbps encryption transmission without OSNR penalty can be achieved simultaneously over a 120 km standard single-mode fiber.