Low-threshold lasing from bound states in the continuum with dielectric metasurfaces

Opt Lett. 2023 Dec 15;48(24):6480-6483. doi: 10.1364/OL.505704.

Abstract

Bound states in the continuum (BICs) with extremely large quality factors (Q factors) can enhance the light-matter interaction and thus achieve low-threshold lasing. Here, we theoretically propose and experimentally demonstrate the low-threshold lasing at room temperature based on BICs. A threshold of approximately 306.7 W/cm2 (peak intensity) under a 7.5 ns-pulsed optical excitation is presented in an all-dielectric metasurface system consisting of titanium dioxide (TiO2) nanopillars with a dye film. Also, the multimode lasing can be excited by the higher pumping. Our results may find exciting applications in on-chip coherent light sources, filtering, and sensing.