Exact exchange-like electric response from a meta-generalized gradient approximation: A semilocal realization of ultranonlocality

J Chem Phys. 2023 Dec 21;159(23):234107. doi: 10.1063/5.0173776.

Abstract

We review the concept of ultranonlocality in density functional theory and the relation between ultranonlocality, the derivative discontinuity of the exchange energy, and the static electric response in extended molecular systems. We present the construction of a new meta-generalized gradient approximation for exchange that captures the ultranonlocal response to a static electric field in very close correspondence to exact exchange, yet at a fraction of its computational cost. This functional, in particular, also captures the dependence of the response on the system size. The static electric polarizabilities of hydrogen chains and oligo-acetylene molecules calculated with this meta-GGA are quantitatively close to the ones obtained with exact exchange. The chances and challenges associated with the construction of meta-GGAs that are intended to combine a substantial derivative discontinuity and ultranonlocality with an accurate description of electronic binding are discussed.