[Effects of Organic Fertilizer Combined with Biochar on Denitrifying Microorganisms and Enzyme Activities in Orchard Soil]

Huan Jing Ke Xue. 2023 Dec 8;44(12):6955-6964. doi: 10.13227/j.hjkx.202212069.
[Article in Chinese]

Abstract

To study the effects of organic fertilizer combined with biochar on soil denitrification and denitrifying microbial community structure, this study took lemon orchard soil as the research object and adopted a pot experiment, setting up five fertilization treatments:no fertilization(CK), conventional fertilization(F), organic fertilizer(P), fertilizer+biochar(FP), and organic fertilizer+biochar(PP). The abundance and community structure of denitrifying microorganisms were studied using real-time quantitative PCR and T-RFLP. Redundancy analysis(RDA) was used to explore the environmental factors affecting the denitrifying microbial community structure, and PLS-PM analysis was used to explore the environmental factors affecting the denitrification potential of lemon orchard soil. The results showed as follows:① compared with that under the single fertilizer treatment(F), the organic fertilizer and biochar(P, FP, and PP) treatments significantly increased the denitrification potential of the soil, ranging from 147.8% to 1445.3%. The denitrification rate of soil treated with organic fertilizer combined with biochar was 23.8% lower than that treated with organic fertilizer alone. ② Compared with that in the CK treatment, fertilization treatment significantly increased the abundance of nirS and nirK denitrification microorganisms. Fertilizer treatments(F and FP) significantly reduced the abundance of nosZ denitrifying microorganisms. Biochar treatment significantly changed the diversity and uniformity of denitrifying microorganisms, but the specific law and mechanism quality remained unclear. ③ The results of RDA analysis showed that fertilization could affect the community structure of nirS, nirK, and nosZ denitrifying microorganisms by changing C/N, WC, NO3--N, SOC, AK, and AP. ④ PLS-PM analysis showed that soil denitrification was positively correlated with pH and the abundance of nirK denitrification microorganisms, and NO3--N indirectly affected soil denitrification by affecting the abundance of nirK denitrification microorganisms. In addition, the nirK microbial community was the dominant microbial community in soil denitrification in lemon orchards. In conclusion, organic fertilizer directly affected soil denitrification by regulating soil pH, whereas regulating NO3--N content affected nirK denitrification microbial abundance, indirectly affecting soil denitrification. The application of organic fertilizer combined with biochar could slow down the improvement of soil denitrification caused by single application of organic fertilizer, which is more suitable for promotion in orchards in this region.

Keywords: biochar; denitrification potential; denitrifying microorganism; environmental factors; organic fertilizer.

Publication types

  • English Abstract

MeSH terms

  • Denitrification
  • Fertilizers*
  • Soil Microbiology
  • Soil* / chemistry

Substances

  • Soil
  • biochar
  • Fertilizers