Comparison of retinal degeneration treatment with four types of different mesenchymal stem cells, human induced pluripotent stem cells and RPE cells in a rat retinal degeneration model

J Transl Med. 2023 Dec 14;21(1):910. doi: 10.1186/s12967-023-04785-1.

Abstract

Background: Retinal degeneration (RD) is a group of disorders on irreversible vision loss. Multiple types of stem cells were used in clinical trials for RD treatment. However, it remains unknown what kinds of stem cells are most effective for the treatment. Therefore, we investigated the subretinal transplantation of several types of stem cells, human adipose-derived stem cells (hADSCs), amniotic fluid stem cells (hAFSCs), bone marrow stem cells (hBMSCs), dental pulp stem cells (hDPSCs), induced pluripotent stem cell (hiPSC), and hiPSC-derived retinal pigment epithelium (RPE) cells for protection effects, paracrine effects and treatment efficiency in an RD disease model rats.

Methods: The generation and characterization of these stem cells and hiPSC-derived RPE cells were performed before transplantation. The stem cells or hiPSC-derived RPE cell suspension labelled with CellTracker Green to detect transplanted cells were delivered into the subretinal space of 3-week-old RCS rats. The control group received subretinal PBS injection or non-injection. A series of detections including fundus photography, optomotor response (OMR) evaluations, light-dark box testing, electroretinography (ERG), and hematoxylin and eosin (HE) staining of retinal sections were conducted after subretinal injection of the cells.

Results: Each stem cell, hiPSC-derived RPE cell or PBS (blank experiment) was successfully transplanted into at least six RCS rats subretinally. Compared with the control rats, RCS rats subjected to subretinal transplantation of any stem cells except hiPSCs showed higher ERG waves (p < 0.05) and quantitative OMR (qOMR) index values (hADSCs: 1.166, hAFSCs: 1.249, hBMSCs: 1.098, hDPSCs: 1.238, hiPSCs: 1.208, hiPSC-RPE cells: 1.294, non-injection: 1.03, PBS: 1.06), which indicated better visual function, at 4 weeks post-injection. However, only rats that received hiPSC-derived RPE cells maintained their visual function at 8 weeks post-injection (p < 0.05). The outer nuclear layer thickness observed in histological sections after HE staining showed the same pattern as the ERG and qOMR results.

Conclusions: Compared to hiPSC-derived RPE cells, adult and fetal stem cells yielded improvements in visual function for up to 4 weeks post-injection; this outcome was mainly based on the paracrine effects of several types of growth factors secreted by the stem cells. Patients with RD will benefit from the stem cell therapy.

Keywords: Electroretinography; Human pluripotent stem cell; Mesenchymal stem cell; Retinal degeneration; Retinal pigmented epithelium; Royal College of Surgeons rats; Stem cell therapy; Subretinal transplantation; Visual function.

MeSH terms

  • Adult
  • Animals
  • Electroretinography
  • Humans
  • Induced Pluripotent Stem Cells* / metabolism
  • Induced Pluripotent Stem Cells* / pathology
  • Mesenchymal Stem Cells* / metabolism
  • Rats
  • Retina / pathology
  • Retinal Degeneration* / therapy
  • Retinal Pigment Epithelium / pathology