Heat-vision based drone surveillance augmented by deep learning for critical industrial monitoring

Sci Rep. 2023 Dec 15;13(1):22291. doi: 10.1038/s41598-023-49589-x.

Abstract

This study examines the application of drone-assisted infrared (IR) imaging with vision grayscale imaging and deep learning for enhanced abnormal detection in nuclear power plants. A scaled model, replicating the modern pressurized water reactor, facilitated the data collection for normal and abnormal conditions. A drone, equipped with dual vision and IR cameras, captured detailed operational imagery, crucial for detecting subtle anomalies within the plant's primary systems. Deep learning algorithms were deployed to interpret these images, aiming to identify component abnormals not easily discernible by traditional monitoring. The object detection model was trained to classify normal and abnormal component states within the facility, marked by color-coded bounding boxes for clarity. Models like YOLO and Mask R-CNN were evaluated for their precision in anomaly detection. Results indicated that the YOLO v8m model was particularly effective, showcasing high accuracy in both detecting and adapting to system anomalies, as validated by high mAP scores. The integration of drone technology with IR imaging and deep learning illustrates a significant stride toward automating abnormal detection in complex industrial environments, enhancing operational safety and efficiency. This approach has the potential to revolutionize real-time monitoring in safety-critical settings by providing a comprehensive, automated solution to abnormal detection.