A simulation and risk assessment framework for water-energy-environment nexus: A case study in the city cluster along the middle reach of the Yangtze River, China

Sci Total Environ. 2024 Feb 20:912:169212. doi: 10.1016/j.scitotenv.2023.169212. Epub 2023 Dec 12.

Abstract

In the Anthropocene, there is a strong interlinkage among water, energy, and the environment. The water-energy-environment nexus (WEEN) has been vigorously advocated as an emerging development paradigm and a global research agenda. Based on the nexus concept, a framework for the WEEN complex system simulation and risk assessment is developed. The three metropolitan areas of the city cluster along the middle reaches of the Yangtze River (CCMRYR) are taken as the objects. Regional policies are combined with generic shared socio-economic pathways (SSPs) to form a localized SSPs suitable for the research region. The dynamic simulation of the WEEN complex system and the risk analysis are carried out with the combination of system dynamics models and copula functions. Results show that: There are obvious differences in water utilization, energy consumption, air pollutant emissions, and water pollutant emissions among the three metropolitan areas. The issue of high carbon intensity in the Wuhan Metropolitan Coordinating Region needs to be emphasized and solved from the perspective of optimizing the industrial structure. Adhering to current development patterns, there will be successive peaks in water utilization, energy consumption, and carbon emissions in Wuhan, Dongting Lake, and Poyang Lake Metropolitan Coordinating Region by 2030, leading to high synergy risks at the systemic level, with maximum values of 0.84, 0.85, 0.62, respectively. A development path based on conservation priorities indicates that future policymaking needs to prioritize a resource-saving and pollution-control development pattern directed by technological upgrading against the backdrop of scarce natural resource endowments. The localized SSPs are a beneficial extension that enriches the narrative of regional-scale SSPs. The evolutionary trajectories and risk assessments of WEEN complex systems under different localized SSPs provide a sweeping insight into the consequences of policy decisions, thus enabling policymakers to appraise policy rationality and implement appropriate corrective measures.

Keywords: Copula; Risk assessment; Shared socio-economic pathways; System dynamics; Water-energy-environment nexus.