Biocompatibility and osteogenic potential of choline phosphate chitosan-coated biodegradable Zn1Mg

Acta Biomater. 2024 Feb:175:395-410. doi: 10.1016/j.actbio.2023.12.014. Epub 2023 Dec 13.

Abstract

Zinc alloys have demonstrated considerable potentials as implant materials for biodegradable vascular and orthopedic applications. However, the high initial release of Zn2+ can trigger intense immune responses that impede tissue healing. To address this challenge and enhance the osteogenic capacity of zinc alloys, the surface of Zn1Mg was subjected to CO2 plasma modification (Zn1Mg-PP) followed by grafting with choline phosphate chitosan (Zn1Mg-PP-PCCs). This study aims to investigate the in vitro and in vivo biocompatibility of the surface-modified Zn1Mg. The effect of the surface modification on the inflammatory response and osteogenic repair process was investigated. Compared with unmodified Zn1Mg, the degradation rate of Zn1Mg-PP-PCCs was significantly decreased, avoiding the cytotoxicity triggered by the release of large amounts of Zn2+. Moreover, PCCs significantly enhanced the cell-material adhesion, promoted the proliferation of osteoblasts (MC3T3-E1) and upregulated the expression of key osteogenic factors in vitro. Notably, the in vivo experiments revealed that the surface modification of Zn1Mg suppressed inhibited the expression of inflammatory cytokines, promoting the secretion of anti-inflammatory factors, thereby reducing inflammation and promoting bone tissue repair. Furthermore, histological analysis of tissue sections exhibited strong integration between the material and the bone, along with well-defined new bone formation and reduced osteoclast aggregation on the surface. This was attributed to the improved immune microenvironment by PCCs, which promoted osteogenic differentiation of osteoblasts. These findings highlight that the preparation of PCCs coatings on zinc alloy surfaces effectively inhibited ion release and modulated the immune environment to promote bone tissue repair. STATEMENT OF SIGNIFICANCE: Surface modification of biodegradable Zn alloys facilitates the suppression of intense immune responses caused by excessive ion release concentrations from implants. We modified the surface of Zn1Mg with choline phosphate chitosan (PCCs) and investigated the effects of surface modification on the inflammatory response and osteogenic repair process. In vitro results showed that the PCCs coating effectively reduced the degradation rate of Zn1Mg to avoid cytotoxicity caused by high Zn2+ concentration, favoring the proliferation of osteoblasts. In addition, in vivo results indicated that Zn1Mg-PP-PCCs attenuated inflammation to promote bone repair by modulating the release of inflammation-related factors. The surface-modified Zn1Mg implants demonstrated strong osseointegration, indicating that the PCCs coating effectively modulated the immune microenvironment and promoted bone healing.

Keywords: Biodegradation; In vitro cell behavior; Inflammation; Phosphocholine chitosan; Promote bone formation; Zn1Mg.

MeSH terms

  • Alloys / pharmacology
  • Chitosan* / pharmacology
  • Coated Materials, Biocompatible / pharmacology
  • Humans
  • Inflammation
  • Osteogenesis*
  • Phosphorylcholine
  • Zinc / pharmacology

Substances

  • Chitosan
  • Phosphorylcholine
  • Alloys
  • Zinc
  • Coated Materials, Biocompatible