The predictive, preventive, and personalized medicine of insomnia: gut microbiota and inflammation

EPMA J. 2023 Nov 17;14(4):571-583. doi: 10.1007/s13167-023-00345-1. eCollection 2023 Dec.

Abstract

Background: The human gut microbiota (GM) has been recognized as a significant factor in the development of insomnia, primarily through inflammatory pathways, making it a promising target for therapeutic interventions. Considering the principles of primary prediction, targeted prevention, and personalized treatment medicine (PPPM), identifying specific gut microbiota associated with insomnia and exploring the underlying mechanisms comprehensively are crucial steps towards achieving primary prediction, targeted prevention, and personalized treatment of insomnia.

Working hypothesis and methodology: We hypothesized that alterations in the composition of specific GM could induce insomnia through an inflammatory response, which postulates the existence of a GM-inflammation-insomnia pathway. Mendelian randomization (MR) analyses were employed to examine this pathway and explore the mediative effects of inflammation. We utilized genetic proxies representing GM, insomnia, and inflammatory indicators (including 41 circulating cytokines and C-reactive protein (CRP)), specifically identified from European ancestry. The primary method used to identify insomnia-related GM and examine the medicative effect of inflammation was the inverse variance weighted method, supplemented by the MR-Egger and weighted median methods. Our findings have the potential to identify individuals at risk of insomnia through screening for GM imbalances, leading to the development of targeted prevention and personalized treatment strategies for the condition.

Results: Nine genera and three circulating cytokines were identified to be associated with insomnia; only the associations of Clostridium (innocuum group) and β-NGF on insomnia remained significant after the FDR test, OR = 1.08 (95% CI = 1.04-1.12, P = 1.45 × 10-4, q = 0.02) and OR = 1.06 (95% CI = 1.02-1.10, P = 1.06 × 10-3, q = 0.04), respectively. CRP was associated with an increased risk of insomnia, OR = 1.05 (95% CI = 1.01-1.10, P = 6.42 × 10-3). CRP mediated the association of Coprococcus 1, Holdemania, and Rikenellaceae (RC9gut group) with insomnia. No heterogeneity or pleiotropy were detected.

Conclusions: Our study highlights the role of specific GM alterations in the development of insomnia and provides insights into the mediating effects of inflammation. Targeting these specific GM alterations presents a promising avenue for advancing the transition from reactive medicine to PPPM in managing insomnia, potentially leading to significant clinical benefits.

Supplementary information: The online version contains supplementary material available at 10.1007/s13167-023-00345-1.

Keywords: Gut microbiota (GM); Inflammation; Insomnia; Mendelian randomization (MR); Predictive, preventive, personalized medicine (PPPM).