Sn Bulk Phase Doping and Surface Modification on Ti4 O7 for Oxygen Reduction to Hydrogen Peroxide

Chemistry. 2024 Feb 21;30(11):e202303602. doi: 10.1002/chem.202303602. Epub 2024 Jan 4.

Abstract

Developing stable and highly selective two-electron oxygen reduction reaction (2e- ORR) electrocatalysts for producing hydrogen peroxide (H2 O2 ) is considered a major challenge to replace the anthraquinone process and achieve a sustainable green economy. Here, we doped Sn into Ti4 O7 (D-Sn-Ti4 O7 ) by simple polymerization post-calcination method as a high-efficiency 2e- ORR electrocatalyst. In addition, we also applied plain calcination after the grinding method to load Sn on Ti4 O7 (L-Sn-Ti4 O7 ) as a comparison. However, the performance of L-Sn-Ti4 O7 is far inferior to that of the D-Sn-Ti4 O7 . D-Sn-Ti4 O7 exhibits a starting potential of 0.769 V (versus the reversible hydrogen electrode, RHE) and a high H2 O2 selectivity of 95.7 %. Excitingly, the catalyst can maintain a stable current density of 2.43 mA ⋅ cm-2 for 3600 s in our self-made H-type cell, and the cumulative H2 O2 production reaches 359.2 mg ⋅ L-1 within 50,000 s at 0.3 V. The performance of D-Sn-Ti4 O7 is better than that of the non-noble metal 2e- ORR catalysts reported so far. The doping of Sn not only improves the conductivity but also leads to the lattice distortion of Ti4 O7 , further forming more oxygen vacancies and Ti3+ , which greatly improves its 2e- ORR performance compared with the original Ti4 O7 . In contrast, since the Sn on the surface of L-Sn-Ti4 O7 displays a synergistic effect with Tin+ (3≤n≤4) of Ti4 O7 , the active center Tin+ dissociates the O=O bond, making it more inclined to 4e- ORR.

Keywords: Sn-doping; Ti4O7; hydrogen peroxide; two-electron oxygen reduction reaction.