The biomechanical properties of human menisci: A systematic review

Acta Biomater. 2024 Feb:175:1-26. doi: 10.1016/j.actbio.2023.12.010. Epub 2023 Dec 12.

Abstract

Biomechanical characterization of meniscal tissue ex vivo remains a critical need, particularly for the development of suitable meniscus replacements or therapeutic strategies that target the native mechanical properties of the meniscus. To date, a huge variety of test configurations and protocols have been reported, making it extremely difficult to compare the respective outcome parameters, thereby leading to misinterpretation. Therefore, the purpose of this systematic review was to identify test-specific parameters that contribute to uncertainties in the determination of mechanical properties of the human meniscus and its attachments, which derived from common quasi-static and dynamic tests in tension, compression, and shear. Strong evidence was found that the determined biomechanical properties vary significantly depending on the specific test parameters, as indicated by up to tenfold differences in both tensile and compressive properties. Test mode (stress relaxation, creep, cyclic) and configuration (unconfined, confined, in-situ), specimen shape and dimensions, preconditioning regimes, loading rates, post-processing of experimental data, and specimen age and degeneration were identified as the most critical parameters influencing the outcome measures. In conclusion, this work highlights an unmet need for standardization and reporting guidelines to facilitate comparability and may prove beneficial for evaluating the mechanical properties of novel meniscus constructs. STATEMENT OF SIGNIFICANCE: The biomechanical properties of the human meniscus have been studied extensively over the past decades. However, it remains unclear to what extent both test protocol and specimen-related differences are responsible for the enormous variability in material properties. Therefore, this systematic review analyzes the biomechanical properties of the human meniscus in the context of the underlying testing protocol. The most sensitive parameters affecting the determination of mechanical properties were identified and critically discussed. Currently, it is of utmost importance for scientists evaluating potential meniscal scaffolds and biomaterials to have a control group rather than a direct comparison to the literature. Standardization of both test procedures and reporting requirements is needed to improve and accelerate the development of meniscal replacement constructs.

Keywords: Compression; Mechanical properties; Meniscus; Shear; Tension; Testing protocol.

Publication types

  • Systematic Review
  • Review

MeSH terms

  • Biocompatible Materials
  • Biomechanical Phenomena
  • Compressive Strength
  • Humans
  • Meniscus*

Substances

  • Biocompatible Materials