Recent Advancements of Bioinks for 3D Bioprinting of Human Tissues and Organs

ACS Appl Bio Mater. 2024 Jan 15;7(1):17-43. doi: 10.1021/acsabm.3c00806. Epub 2023 Dec 13.

Abstract

3D bioprinting is recognized as a promising biomanufacturing technology that enables the reproducible and high-throughput production of tissues and organs through the deposition of different bioinks. Especially, bioinks based on loaded cells allow for immediate cellularity upon printing, providing opportunities for enhanced cell differentiation for organ manufacturing and regeneration. Thus, extensive applications have been found in the field of tissue engineering. The performance of the bioinks determines the functionality of the entire printed construct throughout the bioprinting process. It is generally expected that bioinks should support the encapsulated cells to achieve their respective cellular functions and withstand normal physiological pressure exerted on the printed constructs. The bioinks should also exhibit a suitable printability for precise deposition of the constructs. These characteristics are essential for the functional development of tissues and organs in bioprinting and are often achieved through the combination of different biomaterials. In this review, we have discussed the cutting-edge outstanding performance of different bioinks for printing various human tissues and organs in recent years. We have also examined the current status of 3D bioprinting and discussed its future prospects in relieving or curing human health problems.

Keywords: 3D bioprinting; bioink; organs; regeneration; tissue engineering.

Publication types

  • Review

MeSH terms

  • Biocompatible Materials
  • Bioprinting*
  • Humans
  • Printing, Three-Dimensional
  • Tissue Engineering

Substances

  • Biocompatible Materials