Distinct brain dynamics and networks for processing short and long auditory time intervals

Sci Rep. 2023 Dec 12;13(1):22018. doi: 10.1038/s41598-023-49562-8.

Abstract

Psychophysical studies suggest that time intervals above and below 1.2 s are processed differently in the human brain. However, the neural underpinnings of this dissociation remain unclear. Here, we investigate whether distinct or common brain networks and dynamics support the passive perception of short (below 1.2 s) and long (above 1.2 s) empty time intervals. Twenty participants underwent an EEG recording during an auditory oddball paradigm with .8- and 1.6-s standard time intervals and deviant intervals either shorter (early) or longer (delayed) than the standard interval. We computed the auditory ERPs for each condition at the sensor and source levels. We then performed whole brain cluster-based permutation statistics for the CNV, N1 and P2, components, testing deviants against standards. A CNV was found only for above 1.2 s intervals (delayed deviants), with generators in temporo-parietal, SMA, and motor regions. Deviance detection of above 1.2 s intervals occurred during the N1 period over fronto-central sensors for delayed deviants only, with generators in parietal and motor regions. Deviance detection of below 1.2 s intervals occurred during the P2 period over fronto-central sensors for delayed deviants only, with generators in primary auditory cortex, SMA, IFG, cingulate and parietal cortex. We then identified deviance related changes in directed connectivity using bivariate Granger causality to highlight the networks dynamics associated with interval processing above and below 1.2. These results suggest that distinct brain dynamics and networks support the perception of time intervals above and below 1.2 s.

MeSH terms

  • Acoustic Stimulation
  • Auditory Cortex*
  • Auditory Perception
  • Brain
  • Electroencephalography
  • Evoked Potentials, Auditory
  • Humans
  • Time Perception*