Automatic diagnosis of true proximity between the mandibular canal and the third molar on panoramic radiographs using deep learning

Sci Rep. 2023 Dec 12;13(1):22022. doi: 10.1038/s41598-023-49512-4.

Abstract

Evaluating the mandibular canal proximity is crucial for planning mandibular third molar extractions. Panoramic radiography is commonly used for radiological examinations before third molar extraction but has limitations in assessing the true contact relationship between the third molars and the mandibular canal. Therefore, the true relationship between the mandibular canal and molars can be determined only through additional cone-beam computed tomography (CBCT) imaging. In this study, we aimed to develop an automatic diagnosis method based on a deep learning model that can determine the true proximity between the mandibular canal and third molars using only panoramic radiographs. A total of 901 third molars shown on panoramic radiographs were examined with CBCT imaging to ascertain whether true proximity existed between the mandibular canal and the third molar by two radiologists (450 molars: true contact, 451 molars: true non-contact). Three deep learning models (RetinaNet, YOLOv3, and EfficientDet) were developed, with performance metrics of accuracy, sensitivity, and specificity. EfficientDet showed the highest performance, with an accuracy of 78.65%, sensitivity of 82.02%, and specificity of 75.28%. The proposed deep learning method can be helpful when clinicians must evaluate the proximity of the mandibular canal and a third molar using only panoramic radiographs without CBCT.

MeSH terms

  • Cone-Beam Computed Tomography / methods
  • Deep Learning*
  • Mandible / diagnostic imaging
  • Mandibular Canal*
  • Molar
  • Radiography, Panoramic / methods